Correcting surface coil excitation inhomogeneities in single-shot SPEN MRI.

نویسندگان

  • Rita Schmidt
  • Mor Mishkovsky
  • Jean-Noel Hyacinthe
  • Nicolas Kunz
  • Rolf Gruetter
  • Arnaud Comment
  • Lucio Frydman
چکیده

Given their high sensitivity and ability to limit the field of view (FOV), surface coils are often used in magnetic resonance spectroscopy (MRS) and imaging (MRI). A major downside of surface coils is their inherent radiofrequency (RF) B1 heterogeneity across the FOV, decreasing with increasing distance from the coil and giving rise to image distortions due to non-uniform spatial responses. A robust way to compensate for B1 inhomogeneities is to employ adiabatic inversion pulses, yet these are not well adapted to all imaging sequences - including to single-shot approaches like echo planar imaging (EPI). Hybrid spatiotemporal encoding (SPEN) sequences relying on frequency-swept pulses provide another ultrafast MRI alternative, that could help solve this problem thanks to their built-in heterogeneous spatial manipulations. This study explores how this intrinsic SPEN-based spatial discrimination, could be used to compensate for the B1 inhomogeneities inherent to surface coils. Experiments carried out in both phantoms and in vivo rat brains demonstrate that, by suitably modulating the amplitude of a SPEN chirp pulse that progressively excites the spins in a direction normal to the coil, it is possible to compensate for the RF transmit inhomogeneities and thus improve sensitivity and image fidelity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging with referenceless distortion correction and flexible regions of interest using single-shot biaxial spatiotemporally encoded MRI

Owing to its intrinsic characteristics, spatiotemporally encoded (SPEN) imaging is less sensitive to adverse effects due to field inhomogeneity in comparison with echo planar imaging, a feature highly desired for functional, diffusion, and real-time MRI. However, the quality of images obtained with SPEN MRI is still degraded by geometric distortions when field inhomogeneity exists. In this stud...

متن کامل

In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding.

Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized (13)C MRI, including CSI with a ce...

متن کامل

Functional MRI using super-resolved spatiotemporal encoding.

Recently, new ultrafast imaging sequences such as rapid acquisition by sequential excitation and refocusing (RASER) and hybrid spatiotemporal encoding (SPEN) magnetic resonance imaging (MRI) have been proposed, in which the phase encoding of conventional echo planar imaging (EPI) is replaced with a SPEN. In contrast to EPI, SPEN provides significantly higher immunity to frequency heterogeneitie...

متن کامل

Super-resolved parallel MRI by spatiotemporal encoding.

Recent studies described an "ultrafast" scanning method based on spatiotemporal (SPEN) principles. SPEN demonstrates numerous potential advantages over EPI-based alternatives, at no additional expense in experimental complexity. An important aspect that SPEN still needs to achieve for providing a competitive ultrafast MRI acquisition alternative, entails exploiting parallel imaging algorithms w...

متن کامل

Interleaved multishot imaging by spatiotemporal encoding: A fast, self-referenced method for high-definition diffusion and functional MRI.

PURPOSE Single-shot imaging by spatiotemporal encoding (SPEN) can provide higher immunity to artifacts than its echo planar imaging-based counterparts. Further improvements in resolution and signal-to-noise ratio could be made by rescinding the sequence's single-scan nature. To explore this option, an interleaved SPEN version was developed that was capable of delivering optimized images due to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 259  شماره 

صفحات  -

تاریخ انتشار 2015